File #2290: "2018_Book_NLARMSNetherlandsAnnualReviewO.pdf"
Testo
1|Foreword|6
1|Preface|8
1|Contents|10
1|About the Contributors|12
1|Law Enforcement and Border Security|15
1|1 Flexibility in Border Security: A Case Study of the Dutch Border Security Team|16
2|1.1 Introduction|17
2|1.2 Theory|18
3|1.2.1 Organizing for Flexibility in Crisis Response|18
3|1.2.2 Types of Flexibility|20
2|1.3 Methods|21
2|1.4 Findings|22
2|1.5 Strategic Flexibility|23
3|1.5.1 Expeditionary Characteristics|23
3|1.5.2 Deployment Approach: Frontex Versus Lead-Nation Approach|24
2|1.6 Structural Flexibility|25
3|1.6.1 Designing an Organizational BST Module|25
3|1.6.2 Rotation Dynamics|25
3|1.6.3 Parent Organization and the BST|26
2|1.7 Operational Flexibility|27
3|1.7.1 Multifunctional Capabilities|27
3|1.7.2 Matching Tasks with Staff|28
3|1.7.3 Position of Interpreters|28
3|1.7.4 Scalability|28
3|1.7.5 Gender Balance|29
3|1.7.6 Criminal Investigation|29
2|1.8 Discussion|30
2|1.9 Conclusion|33
2|References|34
1|2 Legal Challenges Surrounding Maritime Operations in the Mediterranean Sea: Focus on Migrant Flows|36
2|2.1 Introduction|37
2|2.2 The State, Rule of Law and Military Operations|38
2|2.3 Migrant Flows and Maritime Operations in the Mediterranean; Legal Basis|40
2|2.4 EUNAVFOR MED Operation Sophia; Applicable Rules|44
3|2.4.1 Rules of Engagement|45
3|2.4.2 Law Regimes Applicable to Maritime Migrant Flow Operations|47
3|2.4.3 Refugee Law, Mass Migration and Maritime Patrols|50
2|2.5 Synthesis and Conclusion|52
2|References|53
1|3 Helping Migrants While Protecting Against Migration: The Border Security Team in Crisis|54
2|3.1 Introduction|55
2|3.2 Theory|57
3|3.2.1 Sensemaking|57
3|3.2.2 Collective Sensemaking|58
3|3.2.3 Sensemaking in the Migration Crisis|59
2|3.3 Methods|60
3|3.3.1 Case Description|60
3|3.3.2 Data Collection|61
3|3.3.3 Data Analysis|62
2|3.4 Findings|62
3|3.4.1 Narratives|62
3|3.4.2 Collective Sensemaking and Collaborate Actions|66
2|3.5 Discussion|68
3|3.5.1 Theoretical Contributions|68
3|3.5.2 Practical Implications|69
3|3.5.3 Future Research|70
2|3.6 Conclusion|70
2|References|71
1|4 Border Security, Boat Migration and Mediterranean Operations in the Frames of Securitisation and Law Enforcement: Causal Explanation and Process Tracing|75
2|4.1 Introduction|76
2|4.2 Causal Analysis and the Explanatory Capacity of Securitisation|78
3|4.2.1 Social Mechanisms and Facilitating Conditions|79
3|4.2.2 No Fixed, Linear or Regular Course of Securitisation|80
2|4.3 Securitisation Frame: Boat Migrants and Border Control|81
3|4.3.1 Irregular Migration and Shifting Migrant Routes|82
3|4.3.2 Operation Sophia|84
3|4.3.3 Sub-conclusions|85
2|4.4 Law Enforcement Frame: Entitlements and Desecuritisation|87
3|4.4.1 International Law, EU Law, and Non-Refoulement|88
3|4.4.2 Hirsi Judgement|90
3|4.4.3 Sub-conclusions|92
2|4.5 Contentious Data, Categorisation and Frontex’ Risk Analysis|93
2|4.6 Conclusions|97
2|References|98
1|Command and Control for Border Security Applications|101
1|5 Dynamic Resource and Task Management|102
2|5.1 Introduction|103
2|5.2 A Model for Tasks and Resources|104
3|5.2.1 Running Example: Making Pizza|104
3|5.2.2 Tasks and Resources|104
3|5.2.3 Capabilities and Assignments|105
2|5.3 Capability Functions|106
3|5.3.1 Extensibility of the Scheduler|108
2|5.4 Human in the Loop|108
3|5.4.1 Plan B|109
3|5.4.2 Dynamic Planning|109
2|5.5 Making Pizza|110
3|5.5.1 Making Pizza|110
3|5.5.2 Required Resources|111
3|5.5.3 Scheduling|113
3|5.5.4 Execution|114
2|5.6 Related Work|114
2|5.7 Future Work|115
2|5.8 Conclusion|115
2|References|116
1|6 A Mission-Driven C2 Framework for Enabling Heterogeneous Collaboration|117
2|6.1 Introduction|118
2|6.2 Motivation|120
2|6.3 Mission Framework|120
3|6.3.1 The Concept Entity|122
3|6.3.2 The Concept Mission|123
3|6.3.3 A C2 Framework|127
2|6.4 Task Oriented Programming|128
3|6.4.1 Basic and Composite Tasks|129
3|6.4.2 Shared Stores: Information Sharing Between Tasks|129
2|6.5 A Declarative Approach to C2: Formalizing the Command Aim|130
3|6.5.1 Starting Point: Situational Awareness Maintained in Stores|130
3|6.5.2 Primitive Tasks|131
3|6.5.3 Utility Functions and the Generation of Possibilities|133
2|6.6 Case Study 1: Potential Terrorist Threat on a Drilling Rig in the North Sea|133
2|6.7 Case Study 2: Damage Control|135
3|6.7.1 Ship Data Modelling|136
3|6.7.2 FFDC Simulation|137
3|6.7.3 Damage Prediction|138
2|6.8 Conclusions and Future Work|138
3|6.8.1 Relation with NEC|139
3|6.8.2 Future Work|139
2|References|139
1|7 Challenges for Cooperative Wireless Sensor Networks in Border Control Applications|141
2|7.1 Introduction|142
2|7.2 Challenges in WSN|143
3|7.2.1 Propagation Channel|144
3|7.2.2 Cognitive WSNs|144
3|7.2.3 Joint Communication and Sensing in One Technology for WSNs|145
3|7.2.4 Security of WSNs|146
3|7.2.5 Cooperative Aspects of WSNs in Border Control|146
2|7.3 A Game-Theoretic Framework for WSN|146
3|7.3.1 Aspect of Game Theory Relevant for Cooperative WSN|147
3|7.3.2 Technical Welfare|148
3|7.3.3 Transitions Between Partitions|149
3|7.3.4 Testing Stability; D-Stable Partitions|150
3|7.3.5 An Illustrative Example (Intruder Detection)|150
2|7.4 Summary|151
2|References|152
1|Data Analysis and Deployment of Maritime Security Forces|153
1|8 Optimizing Asset Deployment in Maritime Law Enforcement|154
2|8.1 Introduction|155
2|8.2 Task Unit Allocation|156
3|8.2.1 Constructing a Neighbour Configuration|159
3|8.2.2 Calculating the Performance of a Configuration|161
3|8.2.3 Case Study|163
2|8.3 Tactical Planning|166
3|8.3.1 Threat Maps and Risk Maps|167
3|8.3.2 The Search Planning Algorithm|170
3|8.3.3 Risk Reduction|171
3|8.3.4 Determining Sorties|171
3|8.3.5 Determining Search Areas|173
3|8.3.6 Case Study|175
2|8.4 Conclusions|178
2|References|178
1|9 Security Games with Restricted Strategies: An Approximate Dynamic Programming Approach|180
2|9.1 Introduction|181
2|9.2 Model Description|183
3|9.2.1 Basic Model|183
3|9.2.2 Static Approach|184
3|9.2.3 Dynamic Approach|186
2|9.3 Solution Approach: Approximate Dynamic Programming|187
3|9.3.1 Introduction to ADP|188
3|9.3.2 ADP for a Stochastic Game|189
2|9.4 Experiments|192
3|9.4.1 Benefits of the Dynamic Approach|192
3|9.4.2 Computational Results of ADP|194
3|9.4.3 Numerical Results for a Realistic Sized Instance|197
2|9.5 Conclusion|199
2|References|200
1|10 Data Analysis Within the Netherlands Coastguard: Risk Mapping, Social Network Analysis and Anomaly Detection|201
2|10.1 Introduction|202
2|10.2 Netherlands Coastguard|203
2|10.3 Maritime Intelligence and Maritime Situational Awareness|204
3|10.3.1 (Maritime) Risk Mapping|204
3|10.3.2 (Maritime) Social Network Analysis (MSNA)|206
3|10.3.3 (Maritime) Anomaly Detection (AD)|207
2|10.4 NCG Data Analysis Put in Effect|208
2|References|208
1|11 Maximal Covering Location Games: An Application for the Coast Guard|209
2|11.1 Introduction|209
2|11.2 A Short Recap|211
3|11.2.1 Maximal Covering Location Situation|211
3|11.2.2 Maximal Covering Location Game|212
2|11.3 A New Sufficient Condition for Core Non-emptiness|214
2|11.4 An Application for the New Sufficient Condition|216
3|11.4.1 Model|216
3|11.4.2 Relation to Maximal Covering Location Games|217
2|References|220
1|Natural-Scientific Aspects of Border and Port Protection|221
1|12 Vulnerability of Harbours and Near-Shore Infrastructure to Underwater Explosions|222
2|12.1 Introduction|223
2|12.2 Theory|225
3|12.2.1 Explosions in Air|225
3|12.2.2 Underwater Explosions|228
3|12.2.3 Explosions in Air and Underwater Compared|235
3|12.2.4 Damage Mechanisms|237
3|12.2.5 Determination of Safety Zones for Humans and Ships|240
2|12.3 Threats|242
3|12.3.1 Typical Charge Mass of Explosive Threats|243
3|12.3.2 Mitigating Threats|244
2|12.4 Towards Risk Assessment|247
2|12.5 Conclusions|252
2|References|253
1|13 Coastal Border Control Using Magnetic Field Signatures|256
2|13.1 Introduction|257
2|13.2 Why Does a Ship or Submarine Have a Magnetic Signature?|260
2|13.3 Modeling of a Submarine's Magnetic Signature and an Induction Loop|263
3|13.3.1 Modeling a Submarine's Magnetic Signature|263
3|13.3.2 Modeling a Magnetic Induction Loop|264
2|13.4 Simulation Results: Magnetic Signature of a Submarine|265
3|13.4.1 Magnetic Flux Density for the Submarine's Model|265
3|13.4.2 Magnetic Signature as Recorded by the Induction Loop|266
3|13.4.3 Influence of the Loop-Geometry on the Recorded Signature|268
2|13.5 Other Technical Solutions for Magnetic Detection of Submarines|272
2|13.6 Discussion and Conclusion: Is It Time for a Revival of the Induction Loop?|273
2|References|275
1|Preface|8
1|Contents|10
1|About the Contributors|12
1|Law Enforcement and Border Security|15
1|1 Flexibility in Border Security: A Case Study of the Dutch Border Security Team|16
2|1.1 Introduction|17
2|1.2 Theory|18
3|1.2.1 Organizing for Flexibility in Crisis Response|18
3|1.2.2 Types of Flexibility|20
2|1.3 Methods|21
2|1.4 Findings|22
2|1.5 Strategic Flexibility|23
3|1.5.1 Expeditionary Characteristics|23
3|1.5.2 Deployment Approach: Frontex Versus Lead-Nation Approach|24
2|1.6 Structural Flexibility|25
3|1.6.1 Designing an Organizational BST Module|25
3|1.6.2 Rotation Dynamics|25
3|1.6.3 Parent Organization and the BST|26
2|1.7 Operational Flexibility|27
3|1.7.1 Multifunctional Capabilities|27
3|1.7.2 Matching Tasks with Staff|28
3|1.7.3 Position of Interpreters|28
3|1.7.4 Scalability|28
3|1.7.5 Gender Balance|29
3|1.7.6 Criminal Investigation|29
2|1.8 Discussion|30
2|1.9 Conclusion|33
2|References|34
1|2 Legal Challenges Surrounding Maritime Operations in the Mediterranean Sea: Focus on Migrant Flows|36
2|2.1 Introduction|37
2|2.2 The State, Rule of Law and Military Operations|38
2|2.3 Migrant Flows and Maritime Operations in the Mediterranean; Legal Basis|40
2|2.4 EUNAVFOR MED Operation Sophia; Applicable Rules|44
3|2.4.1 Rules of Engagement|45
3|2.4.2 Law Regimes Applicable to Maritime Migrant Flow Operations|47
3|2.4.3 Refugee Law, Mass Migration and Maritime Patrols|50
2|2.5 Synthesis and Conclusion|52
2|References|53
1|3 Helping Migrants While Protecting Against Migration: The Border Security Team in Crisis|54
2|3.1 Introduction|55
2|3.2 Theory|57
3|3.2.1 Sensemaking|57
3|3.2.2 Collective Sensemaking|58
3|3.2.3 Sensemaking in the Migration Crisis|59
2|3.3 Methods|60
3|3.3.1 Case Description|60
3|3.3.2 Data Collection|61
3|3.3.3 Data Analysis|62
2|3.4 Findings|62
3|3.4.1 Narratives|62
3|3.4.2 Collective Sensemaking and Collaborate Actions|66
2|3.5 Discussion|68
3|3.5.1 Theoretical Contributions|68
3|3.5.2 Practical Implications|69
3|3.5.3 Future Research|70
2|3.6 Conclusion|70
2|References|71
1|4 Border Security, Boat Migration and Mediterranean Operations in the Frames of Securitisation and Law Enforcement: Causal Explanation and Process Tracing|75
2|4.1 Introduction|76
2|4.2 Causal Analysis and the Explanatory Capacity of Securitisation|78
3|4.2.1 Social Mechanisms and Facilitating Conditions|79
3|4.2.2 No Fixed, Linear or Regular Course of Securitisation|80
2|4.3 Securitisation Frame: Boat Migrants and Border Control|81
3|4.3.1 Irregular Migration and Shifting Migrant Routes|82
3|4.3.2 Operation Sophia|84
3|4.3.3 Sub-conclusions|85
2|4.4 Law Enforcement Frame: Entitlements and Desecuritisation|87
3|4.4.1 International Law, EU Law, and Non-Refoulement|88
3|4.4.2 Hirsi Judgement|90
3|4.4.3 Sub-conclusions|92
2|4.5 Contentious Data, Categorisation and Frontex’ Risk Analysis|93
2|4.6 Conclusions|97
2|References|98
1|Command and Control for Border Security Applications|101
1|5 Dynamic Resource and Task Management|102
2|5.1 Introduction|103
2|5.2 A Model for Tasks and Resources|104
3|5.2.1 Running Example: Making Pizza|104
3|5.2.2 Tasks and Resources|104
3|5.2.3 Capabilities and Assignments|105
2|5.3 Capability Functions|106
3|5.3.1 Extensibility of the Scheduler|108
2|5.4 Human in the Loop|108
3|5.4.1 Plan B|109
3|5.4.2 Dynamic Planning|109
2|5.5 Making Pizza|110
3|5.5.1 Making Pizza|110
3|5.5.2 Required Resources|111
3|5.5.3 Scheduling|113
3|5.5.4 Execution|114
2|5.6 Related Work|114
2|5.7 Future Work|115
2|5.8 Conclusion|115
2|References|116
1|6 A Mission-Driven C2 Framework for Enabling Heterogeneous Collaboration|117
2|6.1 Introduction|118
2|6.2 Motivation|120
2|6.3 Mission Framework|120
3|6.3.1 The Concept Entity|122
3|6.3.2 The Concept Mission|123
3|6.3.3 A C2 Framework|127
2|6.4 Task Oriented Programming|128
3|6.4.1 Basic and Composite Tasks|129
3|6.4.2 Shared Stores: Information Sharing Between Tasks|129
2|6.5 A Declarative Approach to C2: Formalizing the Command Aim|130
3|6.5.1 Starting Point: Situational Awareness Maintained in Stores|130
3|6.5.2 Primitive Tasks|131
3|6.5.3 Utility Functions and the Generation of Possibilities|133
2|6.6 Case Study 1: Potential Terrorist Threat on a Drilling Rig in the North Sea|133
2|6.7 Case Study 2: Damage Control|135
3|6.7.1 Ship Data Modelling|136
3|6.7.2 FFDC Simulation|137
3|6.7.3 Damage Prediction|138
2|6.8 Conclusions and Future Work|138
3|6.8.1 Relation with NEC|139
3|6.8.2 Future Work|139
2|References|139
1|7 Challenges for Cooperative Wireless Sensor Networks in Border Control Applications|141
2|7.1 Introduction|142
2|7.2 Challenges in WSN|143
3|7.2.1 Propagation Channel|144
3|7.2.2 Cognitive WSNs|144
3|7.2.3 Joint Communication and Sensing in One Technology for WSNs|145
3|7.2.4 Security of WSNs|146
3|7.2.5 Cooperative Aspects of WSNs in Border Control|146
2|7.3 A Game-Theoretic Framework for WSN|146
3|7.3.1 Aspect of Game Theory Relevant for Cooperative WSN|147
3|7.3.2 Technical Welfare|148
3|7.3.3 Transitions Between Partitions|149
3|7.3.4 Testing Stability; D-Stable Partitions|150
3|7.3.5 An Illustrative Example (Intruder Detection)|150
2|7.4 Summary|151
2|References|152
1|Data Analysis and Deployment of Maritime Security Forces|153
1|8 Optimizing Asset Deployment in Maritime Law Enforcement|154
2|8.1 Introduction|155
2|8.2 Task Unit Allocation|156
3|8.2.1 Constructing a Neighbour Configuration|159
3|8.2.2 Calculating the Performance of a Configuration|161
3|8.2.3 Case Study|163
2|8.3 Tactical Planning|166
3|8.3.1 Threat Maps and Risk Maps|167
3|8.3.2 The Search Planning Algorithm|170
3|8.3.3 Risk Reduction|171
3|8.3.4 Determining Sorties|171
3|8.3.5 Determining Search Areas|173
3|8.3.6 Case Study|175
2|8.4 Conclusions|178
2|References|178
1|9 Security Games with Restricted Strategies: An Approximate Dynamic Programming Approach|180
2|9.1 Introduction|181
2|9.2 Model Description|183
3|9.2.1 Basic Model|183
3|9.2.2 Static Approach|184
3|9.2.3 Dynamic Approach|186
2|9.3 Solution Approach: Approximate Dynamic Programming|187
3|9.3.1 Introduction to ADP|188
3|9.3.2 ADP for a Stochastic Game|189
2|9.4 Experiments|192
3|9.4.1 Benefits of the Dynamic Approach|192
3|9.4.2 Computational Results of ADP|194
3|9.4.3 Numerical Results for a Realistic Sized Instance|197
2|9.5 Conclusion|199
2|References|200
1|10 Data Analysis Within the Netherlands Coastguard: Risk Mapping, Social Network Analysis and Anomaly Detection|201
2|10.1 Introduction|202
2|10.2 Netherlands Coastguard|203
2|10.3 Maritime Intelligence and Maritime Situational Awareness|204
3|10.3.1 (Maritime) Risk Mapping|204
3|10.3.2 (Maritime) Social Network Analysis (MSNA)|206
3|10.3.3 (Maritime) Anomaly Detection (AD)|207
2|10.4 NCG Data Analysis Put in Effect|208
2|References|208
1|11 Maximal Covering Location Games: An Application for the Coast Guard|209
2|11.1 Introduction|209
2|11.2 A Short Recap|211
3|11.2.1 Maximal Covering Location Situation|211
3|11.2.2 Maximal Covering Location Game|212
2|11.3 A New Sufficient Condition for Core Non-emptiness|214
2|11.4 An Application for the New Sufficient Condition|216
3|11.4.1 Model|216
3|11.4.2 Relation to Maximal Covering Location Games|217
2|References|220
1|Natural-Scientific Aspects of Border and Port Protection|221
1|12 Vulnerability of Harbours and Near-Shore Infrastructure to Underwater Explosions|222
2|12.1 Introduction|223
2|12.2 Theory|225
3|12.2.1 Explosions in Air|225
3|12.2.2 Underwater Explosions|228
3|12.2.3 Explosions in Air and Underwater Compared|235
3|12.2.4 Damage Mechanisms|237
3|12.2.5 Determination of Safety Zones for Humans and Ships|240
2|12.3 Threats|242
3|12.3.1 Typical Charge Mass of Explosive Threats|243
3|12.3.2 Mitigating Threats|244
2|12.4 Towards Risk Assessment|247
2|12.5 Conclusions|252
2|References|253
1|13 Coastal Border Control Using Magnetic Field Signatures|256
2|13.1 Introduction|257
2|13.2 Why Does a Ship or Submarine Have a Magnetic Signature?|260
2|13.3 Modeling of a Submarine's Magnetic Signature and an Induction Loop|263
3|13.3.1 Modeling a Submarine's Magnetic Signature|263
3|13.3.2 Modeling a Magnetic Induction Loop|264
2|13.4 Simulation Results: Magnetic Signature of a Submarine|265
3|13.4.1 Magnetic Flux Density for the Submarine's Model|265
3|13.4.2 Magnetic Signature as Recorded by the Induction Loop|266
3|13.4.3 Influence of the Loop-Geometry on the Recorded Signature|268
2|13.5 Other Technical Solutions for Magnetic Detection of Submarines|272
2|13.6 Discussion and Conclusion: Is It Time for a Revival of the Induction Loop?|273
2|References|275